
# JVC

# SERVICE MANUAL

# COMPACT COMPONENT SYSTEM

# **MX-DVA5**

|          | Suffix                                                                   |
|----------|--------------------------------------------------------------------------|
| UGTurkey | y, South Africa, Egypt<br>Singapore<br>Brazil, Mexico, Peru<br>Argentina |
| US       | Singapore                                                                |
| UW       | Brazil, Mexico, Peru                                                     |
| UY       | Argentina                                                                |



(No MIC jack and MIC LEVEL volume for UY ver.)









CD/ DVD Mechanism is exchanged by a unit (contain CPC cords).

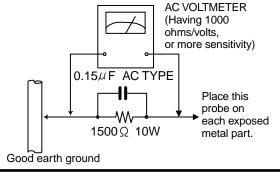
PlayBack Control

Video CD

# VIDEO CD

### **Contents**

| Safety Precautions 1-2            | Adjustment method 1-18           |
|-----------------------------------|----------------------------------|
| Important for laser products 1-3  | Troubleshooting 1-22             |
| Preventing static electricity 1-4 | Description of major ICs1-25~ 35 |
| Disassembly method 1-5            | •                                |
| Wiring connection1-17             |                                  |


# Safety Precautions

- 1. This design of this product contains special hardware and many circuits and components specially for safety purposes. For continued protection, no changes should be made to the original design unless authorized in writing by the manufacturer. Replacement parts must be identical to those used in the original circuits. Services should be performed by qualified personnel only.
- 2. Alterations of the design or circuitry of the product should not be made. Any design alterations of the product should not be made. Any design alterations or additions will void the manufacturer's warranty and will further relieve the manufacture of responsibility for personal injury or property damage resulting therefrom.
- 3. Many electrical and mechanical parts in the products have special safety-related characteristics. These characteristics are often not evident from visual inspection nor can the protection afforded by them necessarily be obtained by using replacement components rated for higher voltage, wattage, etc. Replacement parts which have these special safety characteristics are identified in the Parts List of Service Manual. Electrical components having such features are identified by shading on the schematics and by (1) on the Parts List in the Service Manual. The use of a substitute replacement which does not have the same safety characteristics as the recommended replacement parts shown in the Parts List of Service Manual may create shock, fire, or other hazards.
- 4. The leads in the products are routed and dressed with ties, clamps, tubings, barriers and the like to be separated from live parts, high temperature parts, moving parts and/or sharp edges for the prevention of electric shock and fire hazard. When service is required, the original lead routing and dress should be observed, and it should be confirmed that they have been returned to normal, after re-assembling.
- 5. Leakage currnet check (Electrical shock hazard testing)
  After re-assembling the product, always perform an isolation check on the exposed metal parts of the product (antenna terminals, knobs, metal cabinet, screw heads, headphone jack, control shafts, etc.) to be sure the product is safe to operate without danger of electrical shock.
  Do not use a line isolation transformer during this check.
  - Plug the AC line cord directly into the AC outlet. Using a "Leakage Current Tester", measure the leakage current from each exposed metal parts of the cabinet, particularly any exposed metal part having a return path to the chassis, to a known good earth ground. Any leakage current must not exceed 0.5mA AC (r.m.s.).
  - Alternate check method

Plug the AC line cord directly into the AC outlet. Use an AC voltmeter having, 1,000 ohms per volt or more sensitivity in the following manner. Connect a 1,500  $\Omega$  10W resistor paralleled by a 0.15 $\mu$ F AC-type capacitor between an exposed metal part and a known good earth ground.

Measure the AC voltage across the resistor with the AC voltmeter.

Move the resistor connection to each exposed metal part, particularly any exposed metal part having a return path to the chassis, and meausre the AC voltage across the resistor. Now, reverse the plug in the AC outlet and repeat each measurement. Voltage measured any must not exceed 0.75 V AC (r.m.s.). This corresponds to 0.5 mA AC (r.m.s.).



# Warning

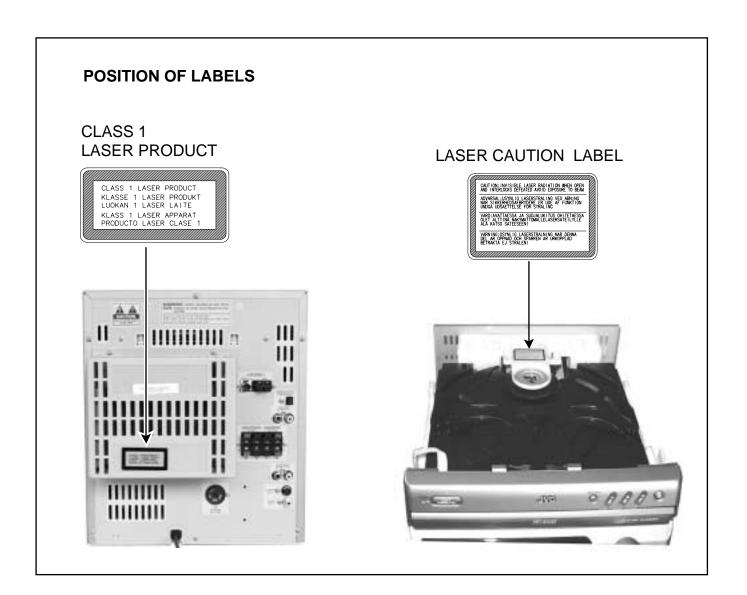
- 1. This equipment has been designed and manufactured to meet international safety standards.
- 2. It is the legal responsibility of the repairer to ensure that these safety standards are maintained.
- 3. Repairs must be made in accordance with the relevant safety standards.
- 4. It is essential that safety critical components are replaced by approved parts.
- 5. If mains voltage selector is provided, check setting for local voltage.

# A CAUTION -

Burrs formed during molding may be left over on some parts of the chassis. Therefore, pay attention to such burrs in the case of preforming repair of this system.

In regard with component parts appearing on the silk-screen printed side (parts side) of the PWB diagrams, the parts that are printed over with black such as the resistor (—), diode (—) and ICP ( —) or identified by the "\(\Lambda\)" mark nearby are critical for safety.

When replacing them, be sure to use the parts of the same type and rating as specified by the manufacturer. (Except the J and C version)


# Important for laser products

#### 1.CLASS 1 LASER PRODUCT

- 2.DANGER: Invisible laser radiation when open and inter lock failed or defeated. Avoid direct exposure to beam.
- 3.CAUTION: There are no serviceable parts inside the Laser Unit. Do not disassemble the Laser Unit. Replace the complete Laser Unit if it malfunctions.
- **4.CAUTION**: The compact disc player uses invisible laserradiation and is equipped with safety switches whichprevent emission of radiation when the drawer is open and the safety interlocks have failed or are de feated. It is dangerous to defeat the safety switches.
- **5.CAUTION:** If safety switches malfunction, the laser is able to function.
- 6.CAUTION: Use of controls, adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.



↑ CAUTION Please use enough caution not to see the beam directly or touch it in case of an adjustment or operation check.



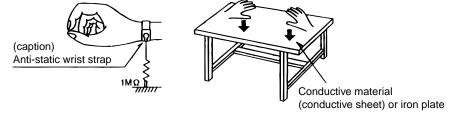
# **Preventing static electricity**

#### 1. Grounding to prevent damage by static electricity

Electrostatic discharge (ESD), which occurs when static electricity stored in the body, fabric, etc. is discharged, can destroy the laser diode in the traverse unit (optical pickup). Take care to prevent this when performing repairs.

#### 2. About the earth processing for the destruction prevention by static electricity

In the equipment which uses optical pick-up (laser diode), optical pick-up is destroyed by the static electricity of the work environment.


Be careful to use proper grounding in the area where repairs are being performed.

#### 2-1 Ground the workbench

Ground the workbench by laying conductive material (such as a conductive sheet) or an iron plate over it before placing the traverse unit (optical pickup) on it.

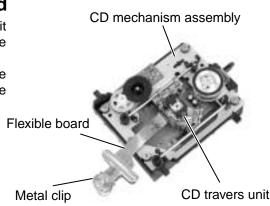
#### 2-2 Ground yourself

Use an anti-static wrist strap to release any static electricity built up in your body.



#### 3. Handling the optical pickup

- 1. In order to maintain quality during transport and before installation, both sides of the laser diode on the replacement optical pickup are shorted. After replacement, return the shorted parts to their original condition. (Refer to the text.)
- 2. Do not use a tester to check the condition of the laser diode in the optical pickup. The tester's internal power source can easily destroy the laser diode.


# 4. Handling the traverse unit (optical pickup)

- 1. Do not subject the traverse unit (optical pickup) to strong shocks, as it is a sensitive, complex unit.
- 2. Cut off the shorted part of the flexible cable using nippers, etc. after replacing the optical pickup. For specific details, refer to the replacement procedure in the text. Remove the anti-static pin when replacing the traverse unit. Be careful not to take too long a time when attaching it to the connector.
- 3. Handle the flexible cable carefully as it may break when subjected to strong force.
- 4. It is not possible to adjust the semi-fixed resistor that adjusts the laser power. Do not turn it.

# Attention when traverse unit is decomposed

Because the CD mechanism assembly of this model is a unit component, the individual component parts consisting of the CD mechanism assembly are not supplied separately.

If you need to decompose the traverse unit, short-circuit the connector of the flexible board by using a metal clip and the like prior to decomposing the traverse unit.



# **Disassembly method**

#### <Main body>

### ■ Removing the metal cover

(See Fig.1 and 2)

- Remove the three screws A attaching the metal cover on the back of the body.
- 2. Remove the six screws **B** attaching the metal cover on both sides of the body.
- 3. Remove the metal cover from the body by lifting the rear part of the cover.

ATTENTION: Do not break the front panel tab fitted to the metal cover.

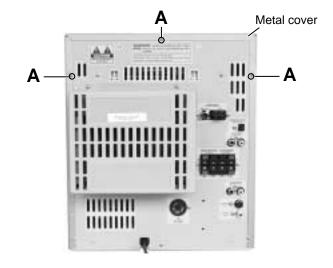
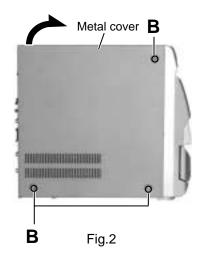




Fig.1



# ■Removing the CD/ DVD changer unit (See Fig.3 to 6)

- Prior to performing the following procedure, remove the metal cover.
- Disconnect the card wire which is attached with adhesive to the left side of the CD/ DVD changer unit.
- Disconnect the harness from connector ACW4 and DCW1 of the CD/ DVD servo board on the back of the CD/ DVD changer unit.
- 3. Disconnect the harness from connector LCW2 and LCW6 on the DVD power board.
- 4. Disconnect the card wire from connector UCW3 on the FLdispaly & system control board.
- 5. Remove the two screws **C** attaching the CD/ DVD changer unit on the back of the body.
- 6. Remove the two screws **D** attaching the CD/ DVD changer unit on the both side of the body.
- 7. Draw the CD changer unit upward from behind while pulling the rear panel outward.

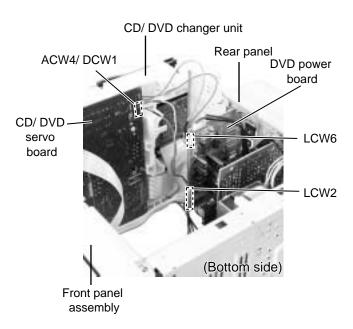



Fig.3

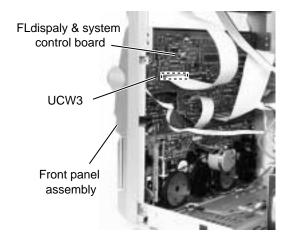



Fig.4

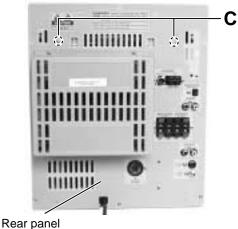
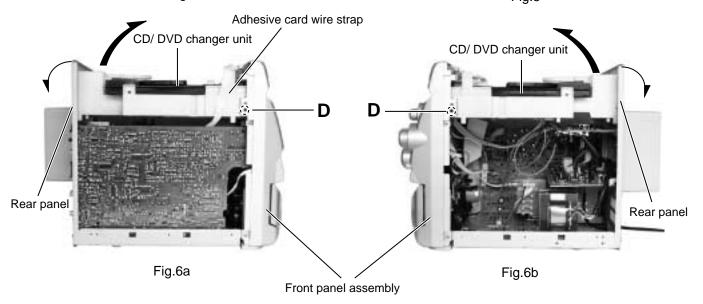
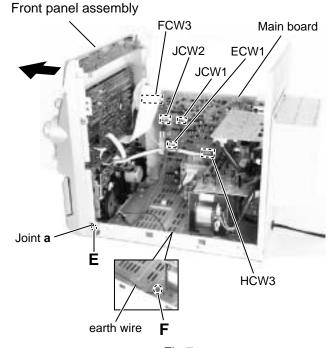
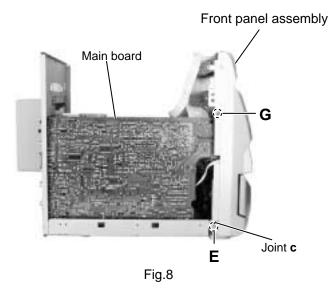
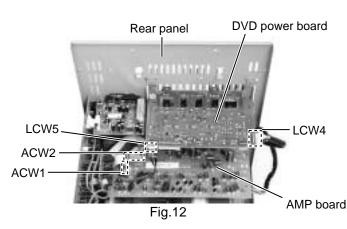



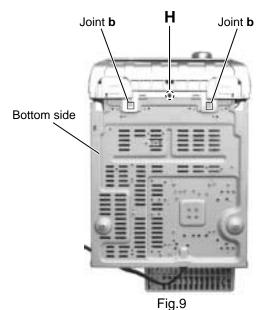

Fig.5



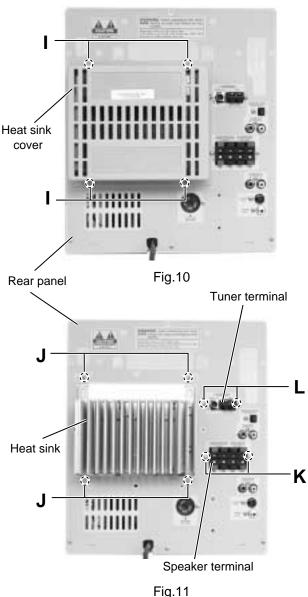
# ■Removing the front panel assembly (See Fig.7 to 9)

- Prior to performing the following procedure, remove the metal cover and the CD/ DVD changer unit.
- Disconnect the card wire from connector FCW3 and the harness from connector JCW1, JCW2 ECW1 and HCW3 on the inner side of the main board in the body.
- 2. Remove the two screws **E** attaching the front panel assembly on both sides of the body.
- 3. Remove the screw **F** attaching the earth terminal extending from the cassette mechanism assembly.
- 4. Remove the screw **G** attaching the front panel assembly and main board.
- 5. Remove the screw **H** attaching the front panel assembly on the bottom of the body.
- 6. Release the two joints **a** on both sides and two joints **b** on the bottom of the body using a screwdriver.



Fig.7




# ■ Removing the heat sink, AMP board and DVD power board (See Fig.10 to 12)

- Prior to performing the following procedure, remove the metal cover and the CD/ DVD changer unit.
- 1. Remove the four screws I attaching the heat sink cover on the back of the body. Remove the heat sink cover.
- 2. Remove the four screws **J** attaching the heat sink, AMP board and DVD power board to the rear panel on the back of the body.
- 3. Remove the two screws **K** attaching the speaker terminal to the rear panel on the back of the body.
- Disconnect the card wire from connector ACW1 and the harness from connector ACW2 on the AMP board.
- 5. Disconnect the harness from connector LCW5 and LCW4 on the DVD power board.
- After moving the heat sink upward, remove the claws. Then pull out the heat sink, AMP board and DVD power board inward.









# Removing the tuner board

(See Fig.11 and 13)

- Prior to performing the following procedure, remove the metal cover and CD/ DVD changer unit.
- Disconnect the card wire from connector CON01 on the tuner board.
- 2. Remove the two screws **L** attaching the tuner board.

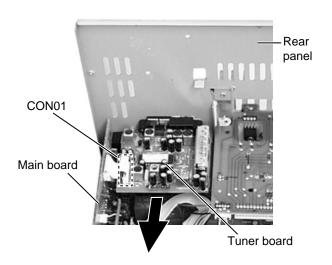



Fig.13

#### ■ Removing the rear panel (See Fig.14)

- Prior to performing the following procedure, remove the metal cover, CD/ DVD changer unit, heat sink & AMP board and tuner pack.
- 1. Remove the one screw **M** (Except UY), three screws **N** and five screws **N'** attaching the rear panel.

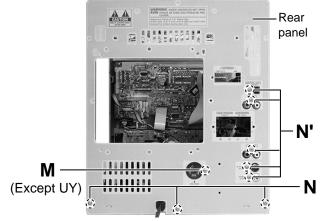



Fig.14

#### ■Removing the main Board

(See Fig. 15)

- Prior to performing the following procedure, remove the metal cover, CD/ DVD changer unit, heat sink & AMP board tuner pack and rear cover.
- 1. Disconnect the card wire from connector FCW3 and the harness from connector JCW1, JCW2, ECW1 and HCW3 on the main board.
- 2. Disconnect the harness from connector PCW1 on the power transformer board.
- 3. Remove the screw **G** attaching the main board holder. (See Fig.8)
- 4. Remove the two screws **O** attaching the heat sink and bottom chassis.

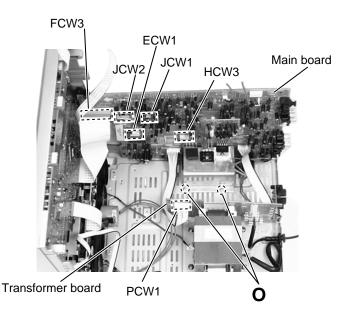
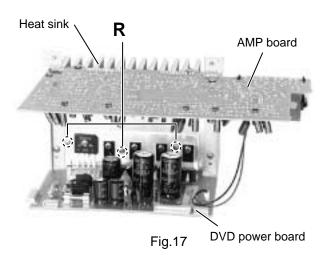
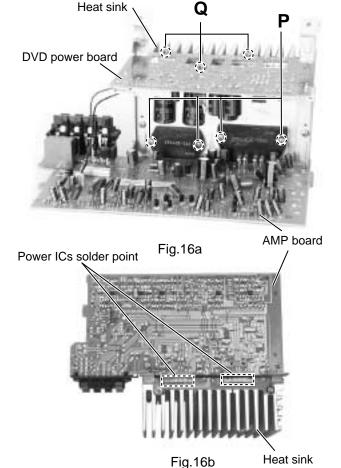





Fig.15

# ■ Removing the power ICs and DVD power board (See Fig.16 and 17)

- Prior to performing the following procedure, remove the metal cover, CD/ DVD changer unit, heat sink, AMP board and DVD power board.
- Remove the four screws P attaching the power ICs to the heat sink.
- 2. Unsolder the power ICs solder point.
- 3. Remove the three screws **Q** and three screws **R** attaching the DVD power board to the heat sink.





# ■Removing the power transformer (See Fig .18)

- Prior to performing the following procedure, remove the metal cover, CD/ DVD changer unit, heat sink & AMP board, tuner pack and rear cover.
- 1. Disconnect the power cord from connector RCW2 of the power transformer board.
- 2. Disconnect the harness from connector PCW1 of the power transformer board.
- 3. Remove the four screws **S** attaching the power transformer.

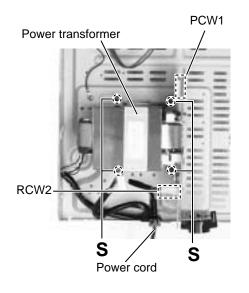



Fig.18

#### <Front panel assembly>

 Prior to performing the following procedure, remove the metal cover, the CD/ DVD changer unit and the front panel assembly.

# ■Removing the power / DVD switch board (See Fig.19)

- 1. Disconnect the card wire from connector UCW1 of the power / DVD switch board.
- 2. Remove the five screws **T** attaching the power / DVD switch board and release the tab **c** outward.

# ■ Removing the FL display & system control board (See Fig.19)

- Disconnect the card wire from the connector UCW3, UCW4,UCW5 and UCW6 on the FL & system control board.
- Remove the five screws U attaching the FL & system board.
- 3. Disconnect the card wire from the connector UCW2 on the FL & system control board.

# ■Removing the headphone board (See Fig.20)

- Prior to performing the following procedure remove the FLdisplay & system control board.
- 1. You can pull out the headphone board.

# ■Removing the front board / MIC board (See Fig. 20 and 21)

- Prior to performing the following procedure, remove the FL display & system control board.
- · No MIC board for UY version.
- 1. Pull out the volume knob, subwoofer level knob and sound mode nob from front side.
- 2. Remove the eleven screws **V** attaching the front board and release the two tabs **d** outward.

Release the two tabs **e** outward and remove the mic board.

# ■Removing the cassette mechanism assembly (See Fig.20)

- 1. Disconnect the card wire **f** from the mechanism board on the cassette mechanism assembly.
- 2. Remove the six screws **W** attaching the cassette mechanism assembly.

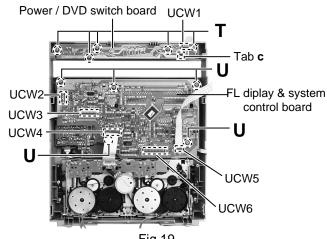



Fig.19

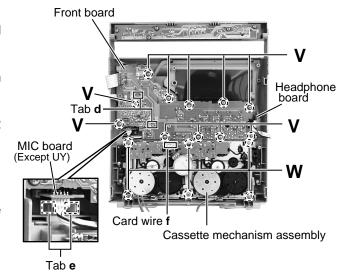



Fig.20

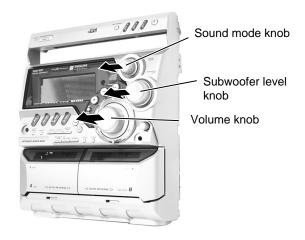



Fig.21

#### <CD/ DVD changer unit>

 Prior to performing the following procedure, remove the CD/ DVD changer unit.

#### ■ Removing the DVD tray (See Fig.1 to 3)

- Disconnect the card wire from connector SCW1 of the CD servo board.
- Turn the black loading pulley gear on the under side of the CD/ DVD changer unit in the direction of the arrow and draw the DVD tray toward the front until it stops.
- Disconnect the card wire from connector LCW1 of the CD/ DVD servo board on the upper side of the CD/ DVD changer unit.
- Push down the two tray stoppers marked **a** and pull out the DVD tray.

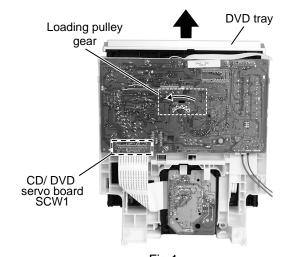
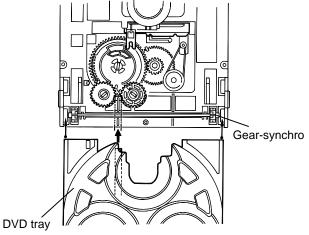
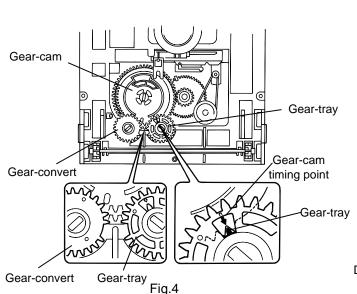




Fig.1

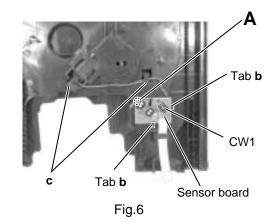
Tray stopper)

CD servo board
LCW1


Fig.3



#### Fig.5


### ■Reinstall the DVD tray (See Fig.4 and 5)

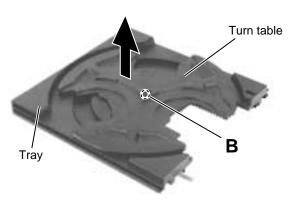
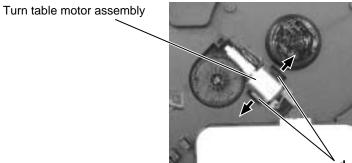
- 1. Align the gear-cam with the gear-tray as shown fig.3, then mount the DVD tray.
- 2. When assembling the DVD tray, take extreme care not engage with gear synchro.

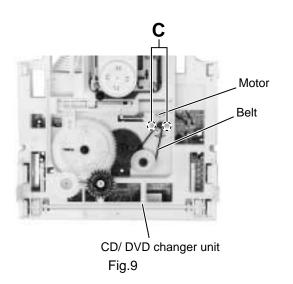


# ■ Removing the sensor board / the turn table motor assembly (See Fig.6 to 8)

- Prior to performing the following procedure, remove the CD tray.
- Remove the screw A attaching the sensor board and release the two tabs b attaching the sensor board on the under side of the DVD tray.
- Disconnect the harness from connector CW1 on the sensor board and release the harness from the two hooks c. Remove the sensor board.
- 3. Remove the screw **B** attaching the turn table. Detach the turn table from the tray.
- Pull outward the tab marked d attaching the turn table motor assembly on the upper side of the tray and detach the turn table motor assembly from the tray.





Fig.7



#### Fig.8

# ■Removing the belt, the CD/ DVD servo board and the switch board (See Fig.9 and 10)

- Prior to performing the following procedure, remove the DVD tray.
- 1. Detach the belt from the pulley on the upper side of the CD/ DVD changer unit (Do not stain the belt with grease).
- 2. Remove the two screws **C** attaching the motor.
- 3. Disconnect the card wire from the connector SCW1 on the CD/ DVD servo board.
- 4. Remove the three screws **D** attaching the CD/ DVD serbo board .



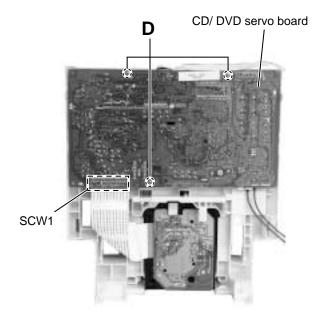



Fig.10

- Removing the CD/ DVD mechanism holder assembly (mechanism included) (See Fig.11 to 13)
- 1. Disconnect the card wire from connector CN5 on the motor board in the CD mechanism holder assembly on the under side of the CD changer unit.
- 2. Remove the screw E attaching the shaft on the right side of the CD mechanism holder assembly.
- 3. Pull outward the stopper fixing the shaft on the left side and remove the CD/ DVD mechanism holder assembly from behind in the direction of the arrow \( \psi.
- 4. Pull out the CD/ DVD mechanism holder assembly.

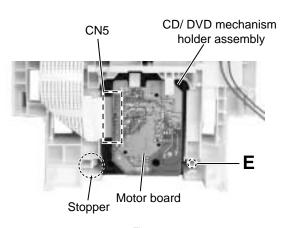



Fig.11

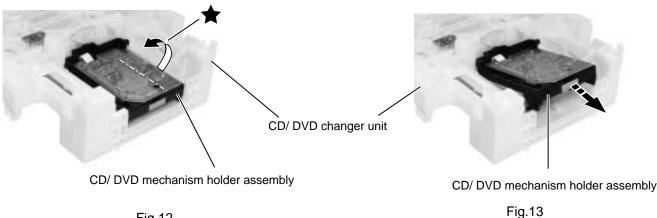



Fig.12

### <Cassette mechanism section>

• Removing the record/playback mechanism.

# ■ Removing the R/P head.

- Remove the screw A on the right side of the R/P head.(Fig.1)
- 2. Remove the screw **B** on the left side of the R/P head.(Fig.1)

### ■ Removing the pinch roller.

- 1. Pull out the pinch roller by opening the pinch roller stopper outward to unlock .(Fig.2)
- 2. When reassembling the pinch roller, refer to fig. 3 to hook up the spring.

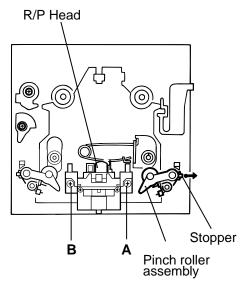



Fig.1

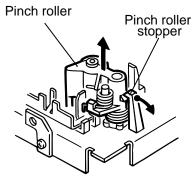



Fig.2

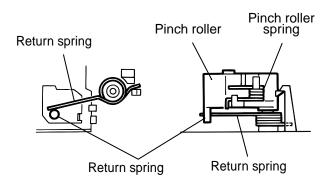
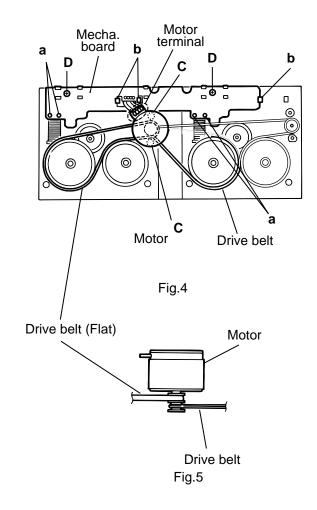
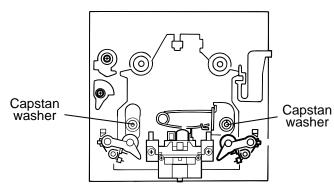
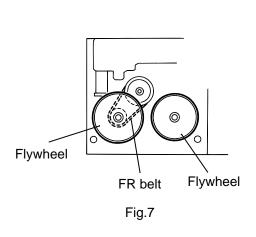


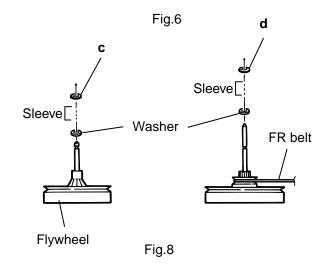

Fig.3

#### Removing the motor.


- Remove the two screws C fixing the motor. Be careful to grease's splash when the drive belt comes off.(Fig.4, Fig.5)
- 2. Unsolder the motor terminal.(Fig.4)


#### ■ Removing the mechanism board.


- 1. Unsolder the four parts **a** on the solenoid coil terminal.(Fig.4)
- 2. Remove the two screws **D** fixing the board.(Fig.4)
- 3. Unhook the three parts **b** from the board.(Fig.4)
- 4. Remove the mechanism board.(Fig.4)


#### ■ Removing the flywheel.

Remove the cut-washers at **c** and **d** from the capstan shaft, then remove the flywheel. When reassembling the flywheel, be sure to use new washers as they cannot be reused. (Fig.7, Fig.8)









#### < Speaker section >

### ■ Removing the side panel (See Fig. 1)

1. Remove the five screws **A** and **B** attaching the side panel, then remove the side panel.

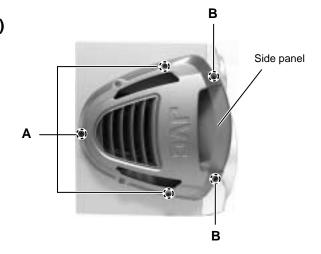



Fig.1

# ■ Removing the side speaker

(See Fig. 2 and 3)

Prior to performing the following procedure, remove the side panel.

- 1. Remove the fore screws **C** attaching the side speaker.
- 2. Pull out the side speaker and remove the speaker cord from the speaker terminal.

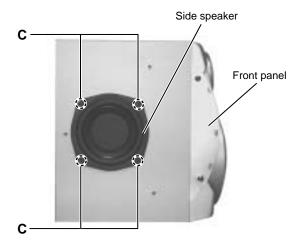



Fig.2

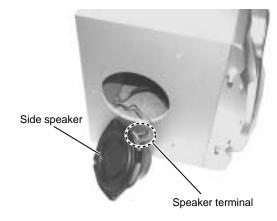
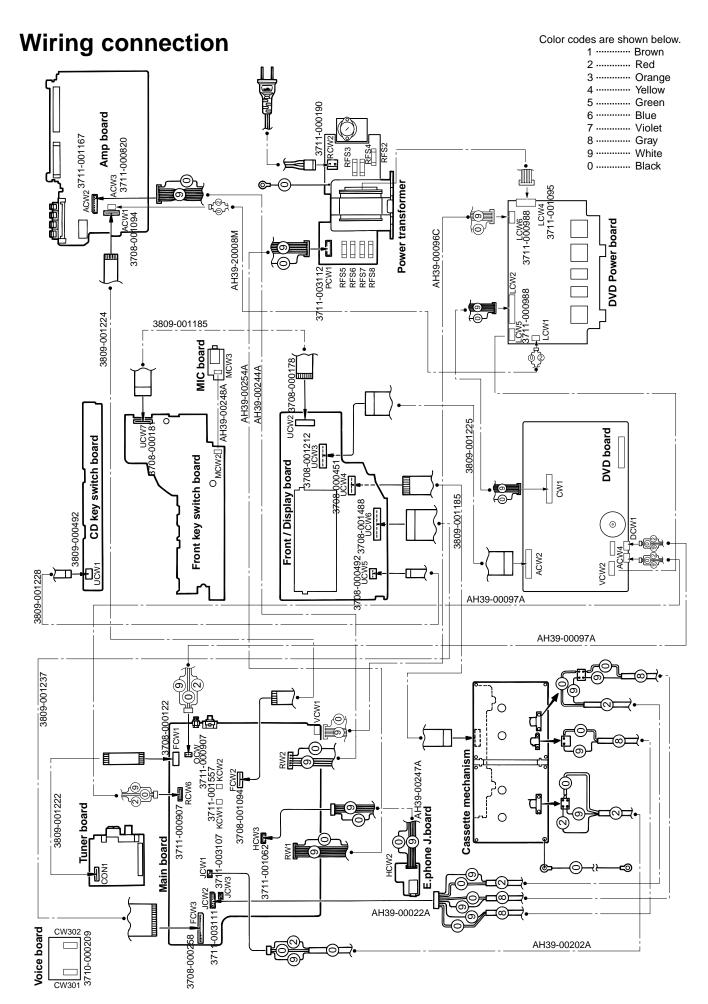
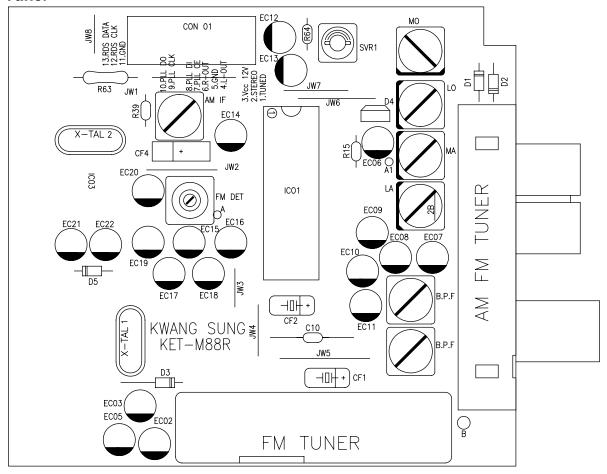





Fig.3



# **Adjustment method**

### 1. Tuner



\* Adjustment Location of Tuner PCB

| ITEAM            | AM(MW) OSC<br>Adjustment | ` '   A 1' (              |             | AM(MW) RF<br>Adjustment   |
|------------------|--------------------------|---------------------------|-------------|---------------------------|
| Received FREQ.   | 522~1611 KHz             | 594 KHz                   | 146~290 KHz | 150 KHz                   |
| Adjustment point | МО                       | MA                        | LO          | LA                        |
| Output           | 1~7.0 V                  | Maximum<br>Output(Fig1-4) | 2~7.0 V     | Maximum<br>Output(Fig1-4) |

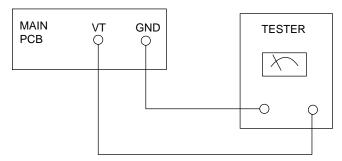



Fig 1-4 OSC Voltage

| FM THD Adjustment                            |                  |  |
|----------------------------------------------|------------------|--|
| SSG FREQ.                                    | 98 MHz           |  |
| Adjustment point (FM DET)                    | FM DETECTOR COIL |  |
| Output                                       | 60 dB            |  |
| Minumum Distortion (0.4% below) (Figure 1-1) |                  |  |

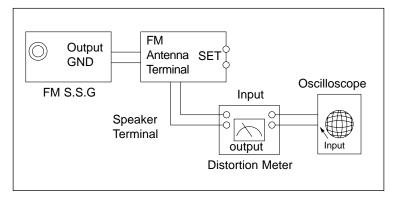



Figure1-1 IF CENTER and THD Adjustment

| FM Search Level Adjustment                                  |                                       |  |  |
|-------------------------------------------------------------|---------------------------------------|--|--|
| SSG FREQ.                                                   | 98 MHz                                |  |  |
| Adjustment point (SVR1)                                     | BEACON<br>SENSITIVITY<br>SEMI-VR(20K) |  |  |
| Output                                                      | 28 dB                                 |  |  |
| Adjust SVR1 so that "TUNED" of FL T is lighted (Figure 1-2) |                                       |  |  |
| *Adjust FM S.S.                                             | *Adjust FM S.S.G level to 28dB        |  |  |

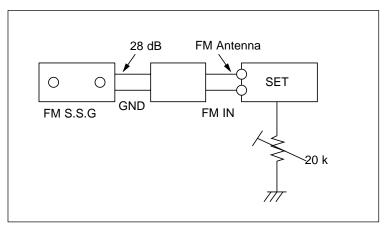



Figure 1-2 FM Auto Search Level Adjustment

| AM(MW) I.F Adjustment       |         |  |
|-----------------------------|---------|--|
| SSG FREQ.                   | 450 kHz |  |
| Frequency                   | 522 kHz |  |
| Adjustment point AM IF      |         |  |
| Maximum output (Figure 1-3) |         |  |

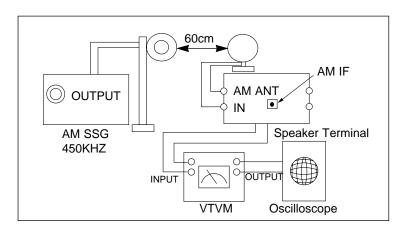



Figure 1-3 AM I.F Adjustment

### 2 Cassette Deck

#### 2-1 To Adjust Tape Speed

-Notes -

- 1) Measuring tape : VT712(or equivalent)
  (Tapes recorded with 3kHz)
- 2) Connect the cassette deck to the frequency counter as in figure 1-5.

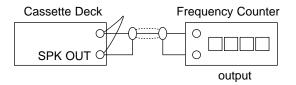



Figure 1-5

| Step | Item                     | Pre-Setup<br>Condition                            | Pre-Setup                                                       | To Adjust                               | Standard   | Remark |
|------|--------------------------|---------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------|------------|--------|
| 1    | TAPE<br>SPEED<br>Control | OUT<br>(connected<br>to the frequency<br>counter) | 1) Deck 1:VT712 2) Press PLAY SW button 3) Deck 2:Same as above | Turn VSR1 to left and right (FRONT PCB) | 3KHz ±30Hz |        |



Figure 1-6

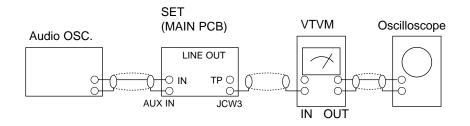



Figure 1-8

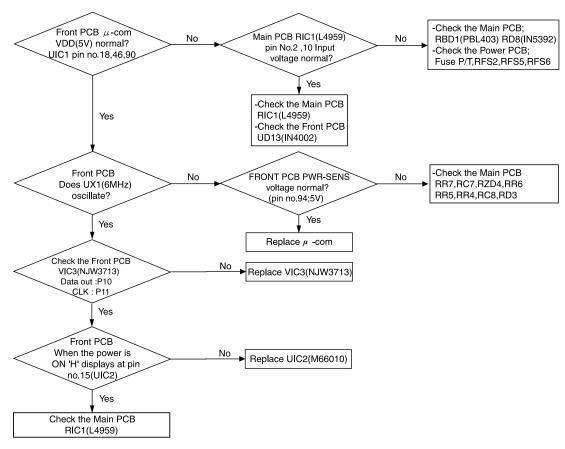
### 2-2 T o Adjust PlayBack Level/REC

-Notes -

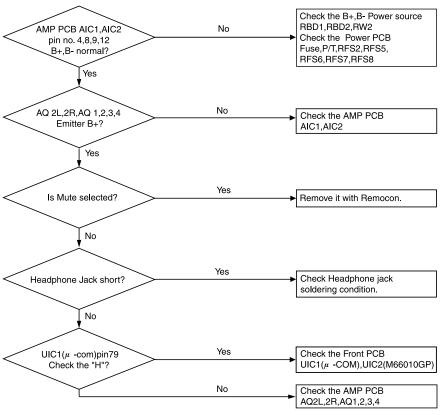
- 1) Before the actual adjustment, clean the play/recording head.
- 2) Measuring tape:
  - i) VT-703 (or equivalent 10kHz AZIMUTH control)
  - ii) AC-225
- 3) The cassette deck is connections as shown in figure 1-7.

# 1. Adjust Deck A Play Level

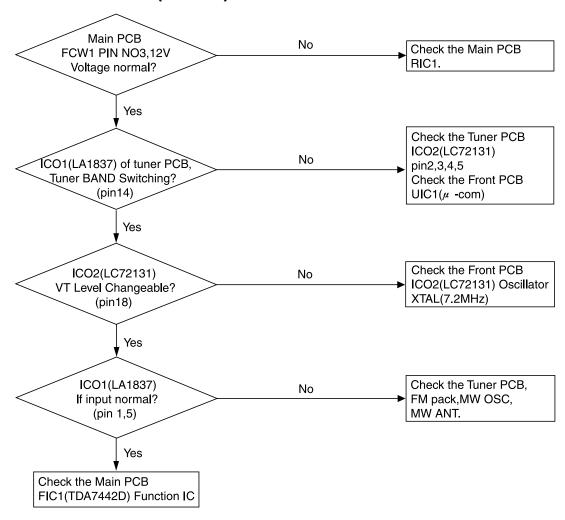
| Step | Item    | Pre-Setup<br>Condition                            | Pre-Setup                                                                            | To Adjust                                                 | Standard                                        | Remark                                                                                   |
|------|---------|---------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|
| 1    | AZIMUTH | SPK OUT<br>(VTVM is<br>connected to<br>the scope) | After putting VT-703 into Deck A 1) Press FWD PLYA button. 2) Press RVS PLAY button. | - Turn the control<br>screw to as shown<br>in Figure 1-6. | Max output<br>and same phase<br>(both channels) | After adjustment secure it with REGION LOCK.  Adjust AZIMUTH when you exchange the head. |


### 2. Adjust Deck B Play Level/REC BIAS

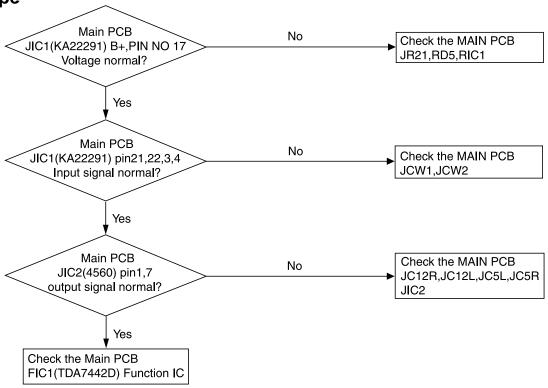
| Step | Item                         | Pre-Setup<br>Condition                            | Pre-Setup                                                                                          | To Adjust                                           | Standard                                        | Remark                                                                                   |
|------|------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------|
| 1    | AZIMUTH                      | SPK OUT<br>(VTVM is<br>connected to<br>the scope) | After putting VT-<br>703 into Deck B<br>1)Press FWD PLAY<br>button.<br>2)Press RVS PLAY<br>button. | - Turn the control screw to as shown in Figure 1-6. | Max output<br>and same phase<br>(both channels) | After adjustment secure it with REGION LOCK.  Adjust AZIMUTH when you exchange the head. |
| 2    | Recording<br>Bias<br>Voltage | Fig 1-8                                           | After putting AC- 225 into Deck B 1)Press REC PLYA button. 2)MAIN PCB JCW3, connectted to VTVM     | Turn JSR2L,JSR2R to the right and left              | 7mV                                             |                                                                                          |


# **Troubleshooting**

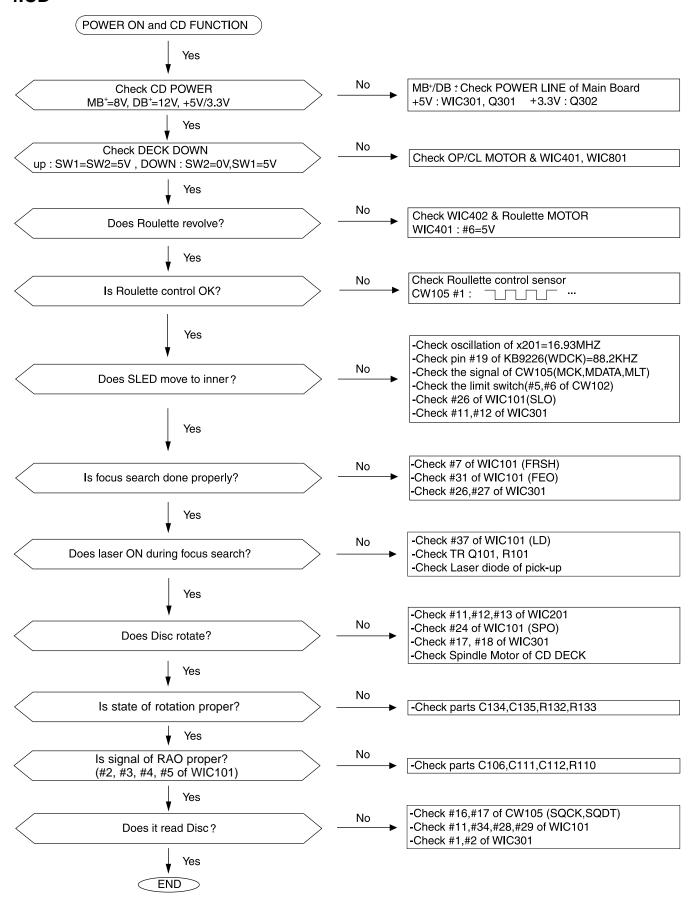
# 1.Amplifier


#### **Power Malfunction**




#### **No Output**




# 2.Tuner Malfunction(FM/AM)

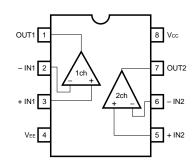


### 3.Tape



#### 4.CD

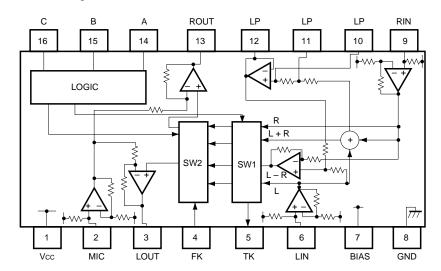



# **Description of major ICs**

8 4Y

# ■ 74HCU04 (VIC6) : Optical

- Pin configuration.
  - 1A 1 14 Vcc 1Y2 13 6A 2A3 12 6Y 2Y4 04U 11 5A 3A 5 10 5Y 3Y 6 9 4A

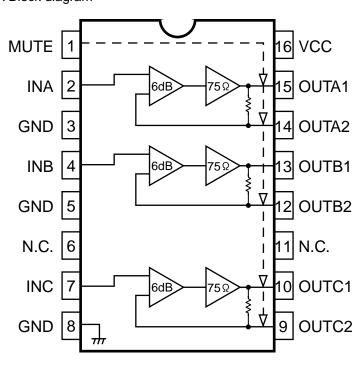

- **■** BA4560 (FIC2, FIC4, FIC5, HIC1, JIC2) : OP amp.
  - 1.Pin layout



# ■ BA3837(IC301): MIC Mixer

#### 1. Block diagram

GND 7

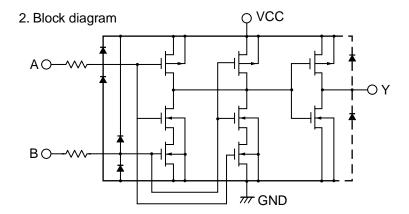



#### 2.Pin function

| Pin No. | Symbol | I/O | Description                           |
|---------|--------|-----|---------------------------------------|
| 1       | VCC    | -   | Power supply                          |
| 2       | MIC IN | ı   | Microphone mixing input               |
| 3       | LOUT   | 0   | Channel L output                      |
| 4       | FK     | -   | Non connect                           |
| 5       | TK     | -   | Non connect                           |
| 6       | LIN    | I   | Channel L input                       |
| 7       | BIAS   | ı   | Signal bias                           |
| 8       | GND    | -   | Connect to GND                        |
| 9       | RIN    | ı   | Channel R input                       |
| 10      | LPF1   | 0   | Connects to LPF time constant element |
| 11      | LPF2   | 0   | Connects to LPF time constant element |
| 12      | LPF3   | 0   | LPF outpout                           |
| 13      | ROUT   | 0   | Channel R output                      |
| 14      | CONTA  | ı   | Mode select input A                   |
| 15      | CONTB  | ı   | Mode select input B                   |
| 16      | CONTC  | I   | Mode select input C                   |

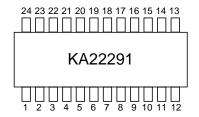
# ■ BA7660FS (VIC8) : 3 channel 75Ω driver

### 1. Block diagram

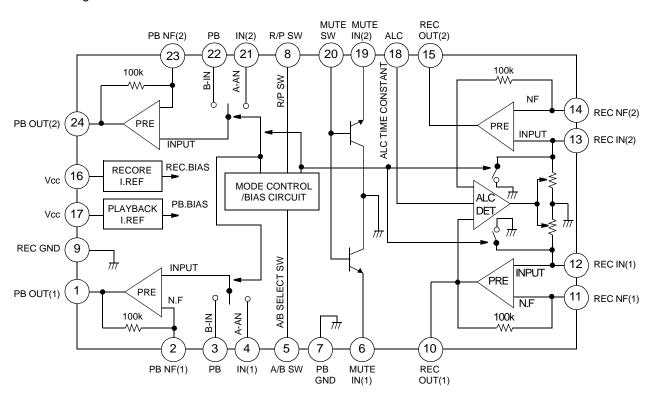



#### 2. Pin function

| Pin No. | Pin Name | I/O | Comment                                                      |
|---------|----------|-----|--------------------------------------------------------------|
| 1       | MUTE     | I   | Mute Control Terminal                                        |
|         |          |     | This pin supplying "H" voltage 3 channel mute operate.       |
| 2       | INA      | I   | Signal Input Terminal                                        |
| 4       | INB      |     | Input signal is composite Video, Y, chroma, RGB and so on.   |
| 7       | INC      |     | Input level range is from 0v to 1.5v (Typ.) 1.3v (Min) DC.   |
| 3       | GND      | -   | Ground Terminal                                              |
| 5       |          |     |                                                              |
| 8       |          |     |                                                              |
| 14      | OUTA2    | 0   | Signal Output Terminal                                       |
| 12      | OUTB2    |     | Output level is (0.9+2 input voltage). 9pin, 12pin and 14pin |
| 9       | OUTC2    |     | are sag compensator terminals.                               |
| 15      | OUTA1    |     | Making 10pin, 13pin or 15pin under 0.2v is respectively      |
| 13      | OUTB1    |     | power save mode each channel.                                |
| 10      | OUTC1    |     |                                                              |
| 16      | VCC      | -   | Power Supply Terminal                                        |

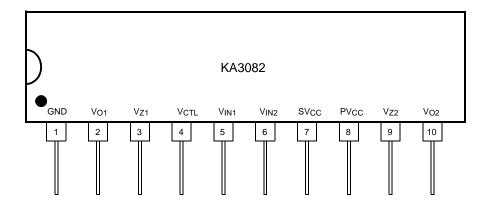

### ■ TC7S08F (DIC7, VIC3): 2 Input and gate






### ■ KA22291(JIC1): RB/REC PRE amp.

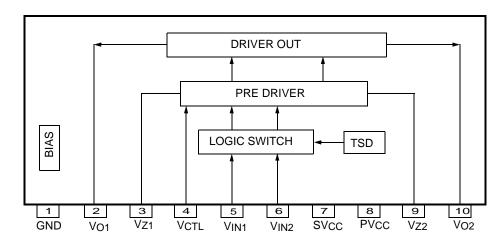
#### 1.Pin layout




#### 2.Block diagram

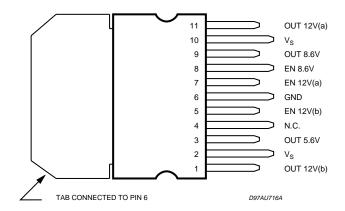


# ■ KA3082 (LIC1, LIC2) : Bi-directional DC motor driver

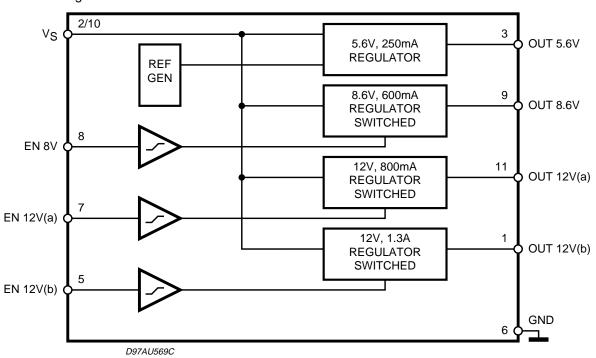

### 1.Pin layout



#### 2.Pin function


| Pin Nu mber | Pin Name | I/O | Pin Function Descriptio n |
|-------------|----------|-----|---------------------------|
| 1           | GND      | -   | Ground                    |
| 2           | VO1      | 0   | Output 1                  |
| 3           | Vz1      | -   | Phase compensation        |
| 4           | VCTL     | I   | Motor speed control       |
| 5           | VIN1     | I   | Input 1                   |
| 6           | VIN2     | I   | Input 2                   |
| 7           | SVCC     | -   | Supply voltage (Signal)   |
| 8           | PVcc     | -   | Supply voltage (Power)    |
| 9           | VZ2      | -   | Phase compensation        |
| 10          | VO2      | 0   | Output 2                  |

### 3.Block Diagram

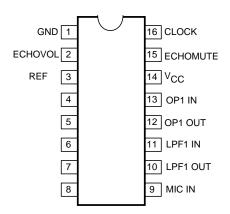



### ■ L4959 (RIC1) : Voltage regulator

#### 1.Pin layout



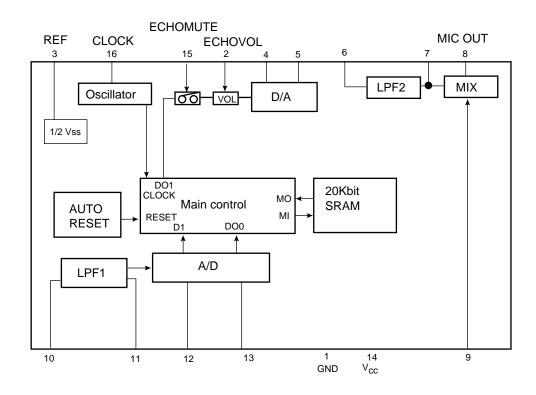
#### 2.Block diagram




#### 3.Pin function

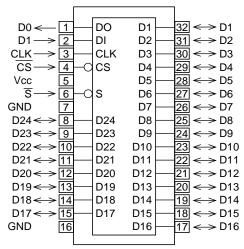
| Pin | Pins        | Description                              |  |  |  |  |
|-----|-------------|------------------------------------------|--|--|--|--|
| 1   | OUT 12V (b) | 12V/1.3A SWITCHED OUTPUT VOLTAGE         |  |  |  |  |
| 2   | Vs          | Supply Voltage                           |  |  |  |  |
| 3   | OUT 5.6V    | 5.6V/250mA OUTPUT VOLTAGE                |  |  |  |  |
| 4   | N.C.        | not connected                            |  |  |  |  |
| 5   | EN 12V (b)  | Enable 12V/1.3A SWITCHED OUTPUT VOLTAGE  |  |  |  |  |
| 6   | GND         | Ground                                   |  |  |  |  |
| 7   | EN 12V (a)  | Enable 12V/0.8A SWITCHED OUTPUT VOLTAGE  |  |  |  |  |
| 8   | EN 8.6V     | Enable 8.6V/0.6A SWITCHED OUTPUT VOLTAGE |  |  |  |  |
| 9   | OUT 8.6     | 8.6V/0.6A SWITCHED OUTPUT VOLTAGE        |  |  |  |  |
| 10  | Vs          | Supply Voltage                           |  |  |  |  |
| 11  | OUT 12V (a) | 12V/0.8A SWITCHED OUTPUT VOLTAGE         |  |  |  |  |

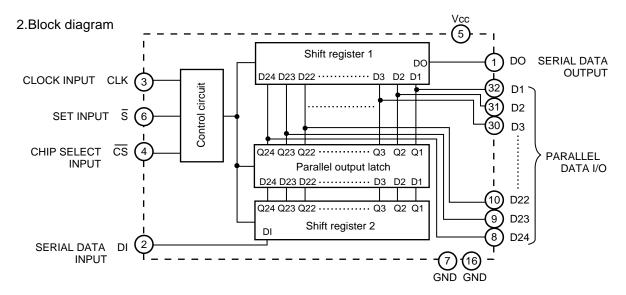
### ■ M65855FP(EIC1) : Sound processor


### 1. Pin layout



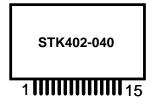
#### 2. Pin function

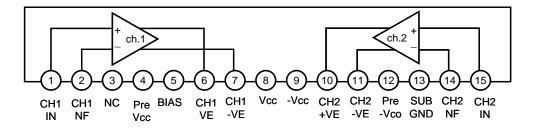

| Pin No. | Symbol          | DESCRIPTION                                                       |  |  |  |  |  |  |
|---------|-----------------|-------------------------------------------------------------------|--|--|--|--|--|--|
| 1       | GND             |                                                                   |  |  |  |  |  |  |
| 2       | ECHOVOL         | Echo level control with external DC voltage                       |  |  |  |  |  |  |
| 3       | REF             | To connect 1/2 Vcc output and filter capacitor                    |  |  |  |  |  |  |
| 4       | OP2 IN          | Uses external C to from an D/A conversion                         |  |  |  |  |  |  |
| 5       | OP2 OUT         | integrator                                                        |  |  |  |  |  |  |
| 6       | LPF2 IN         | Uses external CR to from a low pass filter at the                 |  |  |  |  |  |  |
| 7       | LPF2 OUT        | input side                                                        |  |  |  |  |  |  |
| 8       | MIC OUT         | Mixing output echo output and microphone                          |  |  |  |  |  |  |
| 9       | MIC IN          | Microphone input                                                  |  |  |  |  |  |  |
| 10      | LPF1 OUT        | Uses external CR to from a low pass filter at the                 |  |  |  |  |  |  |
| 11      | LPF1 IN         | input side                                                        |  |  |  |  |  |  |
| 12      | OP1 OUT         | Uses external C to from an D/A conversion                         |  |  |  |  |  |  |
| 13      | OP1 IN          | integrator                                                        |  |  |  |  |  |  |
| 14      | v <sub>CC</sub> | Applies a voltage of 3.5V to 5.5V(Rated5V)                        |  |  |  |  |  |  |
| 15      | ECHOMUTE        | Echo mute control and clock stop control with external DC voltage |  |  |  |  |  |  |
| 16      | CLOCK           | Controls a built -in clock generation circuit with external R     |  |  |  |  |  |  |


### 3. Block diagram.



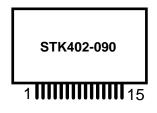
#### ■ M66010 (UIC2) : I/O control

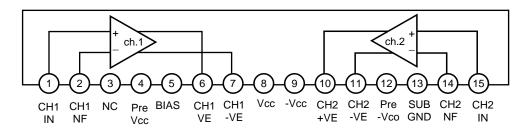

#### 1.Pin layout



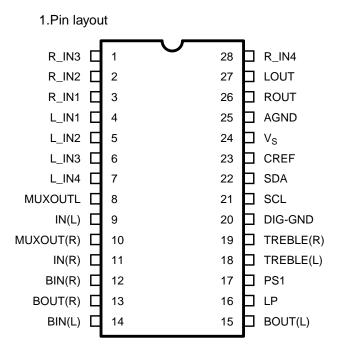


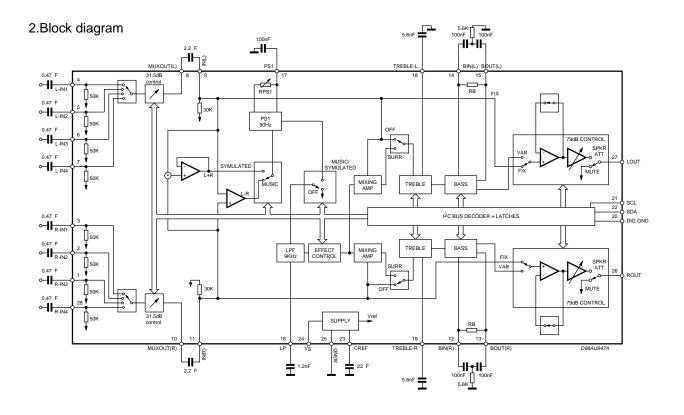

### ■ STK402-040 (AIC1) : 2channel AF power amp.


#### 1.Pin layout



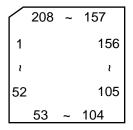




#### ■ STK402-090 (AIC2) : 2channel AF power amp.

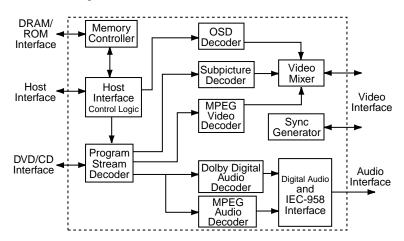

#### 1.Pin layout






### ■ TDA7442D (FIC1): Audio processor






### ■ ZIVA-3 (VIC1) : AV Decoder

#### 1.Terminal Layout



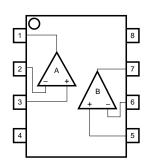
#### 2.Block Diagrams



#### 3.Pin Function (1/3)

| Pin No. | Symbol     | I/O | Function                        | Pin No. | Symbol      | I/O | Function         |
|---------|------------|-----|---------------------------------|---------|-------------|-----|------------------|
| 1       | TEST PINO  | -   | Test pin                        | 26      | ARAM-DATA5  | I/O | Non used         |
| 2       | HDATA0     | I/O | System control data I/O (IC301) | 27      | E-VDD       | 1   | Power supply     |
| 3       | HDATA1     | I/O | System control data I/O (IC301) | 28      | ARAM-DATA6  | I/O | Non used         |
| 4       | HDATA2     | I/O | System control data I/O (IC301) | 29      | E-VSS       | -   | Connect to GND   |
| 5       | E-VDD      | -   | Power supply                    | 30      | ARAM-DATA7  | I/O | Non used         |
| 6       | HDATA3     | I/O | System contorl data I/O (IC301) | 31      | ARAM-ADDR0  | 1   | Connect to TP550 |
| 7       | E-VSS      | -   | Connect to GND                  | 32      | ARAM-ADDR1  | 1   | Connect to TP551 |
| 8       | HDATA4     | I/O | System control data I/O (IC301) | 33      | ARAM-ADDR2  |     | Connect to TP552 |
| 9       | HDATA5     | I/O | System control data I/O (IC301) | 34      | ARAM-ADDR3  | 1   | Connect to TP553 |
| 10      | HDATA6     | I/O | System control data I/O (IC301) | 35      | ARAM-ADDR4  | 1   | Connect to TP554 |
| 11      | HDATA7     | I/O | System control data I/O (IC301) | 36      | E-VDD       | 1   | Power supply     |
| 12      | I-VDD      | 1   | Power supply                    | 37      | ARAM-ADDR5  | 1   | Connect to TP555 |
| 13      | RST        | I   | Reset signal input              | 38      | E-VSS       | 1   | Connect to GND   |
| 14      | I-VSS      | ı   | Connect to GND                  | 39      | ARAM-ADDR6  | ı   | Connect to TP556 |
| 15      | WAIT       | I   | Wait control for IC509          | 40      | I-VDD       | 1   | Power supply     |
| 16      | INT        | 0   | Host interrupt output for ATAPI | 41      | ARAM-ADDR7  | ı   | Connect to TP557 |
| 17      | E-VDD      | ı   | Power supply                    | 42      | I-VSS       | ı   | Connect to GND   |
| 18      | ARAM-OE    | 1   | Connect to TP540                | 43      | ARAM-ADDR8  | 1   | Connect to TP558 |
| 19      | E-VSS      | -   | Connect to GND                  | 44      | ARAM-ADDR9  | 1   | Connect to TP559 |
| 20      | ARAM-WE    | -   | Connect to TP541                | 45      | ARAM-ADDR10 | -   | Connect to TP560 |
| 21      | ARAM-DATA0 | I/O | Non used                        | 46      | ARAM-ADDR11 | -   | Connect to TP561 |
| 22      | ARAM-DATA1 | I/O | Non used                        | 47      | E-VDD       | 1   | Power supply     |
| 23      | ARAM-DATA2 | I/O | Non used                        | 48      | ARAM-ADDR12 | 1   | Connect to TP562 |
| 24      | ARAM-DATA3 | I/O | Non used                        | 49      | E-VSS       | -   | Connect to GND   |
| 25      | ARAM-DATA4 | I/O | Non used                        | 50      | ARAM-ADDR13 | -   | Connect to TP563 |

#### Pin Function (2/3)

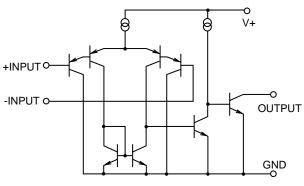

| Pin No. | Symbol      | I/O | Function                    | Pin No. | Symbol    | I/O | Function                    |
|---------|-------------|-----|-----------------------------|---------|-----------|-----|-----------------------------|
| 51      | ARAM-ADDR14 | -   | Connect to TP564            | 97      | E-VSS     | -   | Connect to GND              |
| 52      | TEST-PIN1   | _   | Test pin                    | 98      | M-ADDR11  | 0   | Address output to IC508,504 |
| 53      | M-DATA15    | I/O | Data bus I/O to IC508,IC504 | 99      | M-ADDR8   | 0   | Address output to IC508,504 |
| 54      | M-DATA0     | I/O | Data bus I/O to IC508,IC504 | 100     | M-ADDR10  | 0   | Address output to IC508,504 |
| 55      | E-VDD       | -   | Power supply                | 101     | E-VDD     | -   | Power supply                |
| 56      | M-DATA14    | I/O | Data bus I/O to IC508,IC504 | 102     | M-ADDR7   | 0   | Address output to IC508,504 |
| 57      | E-VSS       | -   | Connect to GND              | 103     | E-VSS     | -   | Connect to GND              |
| 58      | M-DATA1     | I/O | Data bus I/O to IC508,IC504 | 104     | M-ADDR0   | 0   | Address output to IC508,504 |
| 59      | M-DATA13    | I/O | Data bus I/O to IC508,IC504 | 105     | M-ADDR6   | 0   | Address output to IC508,504 |
| 60      | M-DATA2     | I/O | Data bus I/O to IC508,IC504 | 106     | M-ADDR1   | 0   | Address output to IC508,504 |
| 61      | E-VDD       | -   | Power supply                | 107     | E-VDD     | -   | Power supply                |
| 62      | M-DATA12    | I/O | Data bus I/O to IC508,IC504 | 108     | M-ADDR5   | 0   | Address output to IC508,504 |
| 63      | E-VSS       | -   | Connect to GND              | 109     | E-VSS     | -   | Connect to GND              |
| 64      | M-DATA3     | I/O | Data bus I/O to IC508,IC504 | 110     | M-ADDR2   | 0   | Address output to IC508,504 |
| 65      | I-VDD       | -   | Power supply                | 111     | M-ADDR4   | 0   | Address output to IC508,504 |
| 66      | M-DATA11    | I/O | Data bus I/O to IC508,IC504 | 112     | M-ADDR3   | 0   | Address output to IC508,504 |
| 67      | I-VSS       | -   | Connect to GND              | 113     | E-VDD     | -   | Power supply                |
| 68      | M-DATA14    | I/O | Data bus I/O to IC508,IC504 | 114     | M-ADDR12  | -   | Connect to TP513            |
| 69      | E-VDD       | -   | Power supply                | 115     | E-VSS     | -   | Connect to GND              |
| 70      | M-DATA10    | I/O | Data bus I/O to IC508,IC504 | 116     | M-ADDR13  | -   | Connect to TP514            |
| 71      | E-VSS       | -   | Connect to GND              | 117     | I-VDD     | -   | Power supply                |
| 72      | M-DATA5     | I/O | Data bus I/O to IC508,IC504 | 118     | M-ADDR14  | -   | Connect to TP515            |
| 73      | M-DATA9     | I/O | Data bus I/O to IC508,IC504 | 119     | I-VSS     | -   | Connect to GND              |
| 74      | M-DATA6     | I/O | Data bus I/O to IC508,IC504 | 120     | M-ADDR15  | -   | Connect to TP516            |
| 75      | E-VDD       | -   | Power supply                | 121     | M-ADDR16  | -   | Connect to TP517            |
| 76      | M-DATA8     | I/O | Data bus I/O to IC508,IC504 | 122     | M-ADDR17  | -   | Connect to TP518            |
| 77      | E-VSS       | 1   | Connect to GND              | 123     | E-VDD     | -   | Power supply                |
| 78      | M-DATA7     | I/O | Data bus I/O to IC508,IC504 | 124     | M-ADDR18  | -   | Connect to TP519            |
| 79      | LDQM        | 0   | Lower DQ mask enable        | 125     | E-VSS     | -   | Connect to GND              |
| 80      | UDQM        | 0   | Upper DQ mask enable        | 126     | M-ADDR19  | -   | Connect to TP520            |
| 81      | E-VDD       | ı   | Power supply                | 127     | M-ADDR20  | -   | Connect to TP521            |
| 82      | MWE         | 0   | Write enable                | 128     | ROM-CS    | -   | Connect to TP522            |
| 83      | E-VSS       | ı   | Connect to GND              | 129     | TEST-PIN2 | -   | Test pin                    |
| 84      | SD-CLK      | 0   | System clock signal output  | 130     | OSD-CLK   | -   | Connect to TP523            |
| 85      | SD-CAS      | 0   | column address strobe       | 131     | OSD-DATA0 | -   | Connect to TP525            |
| 86      | SD-RAS      | 0   | Row address strobe          | 132     | OSD-DATA1 | -   | Connect to TP526            |
| 87      | E-VDD       | -   | Power supply                | 133     | TEST-PIN3 | -   | Test pin                    |
| 88      | SD-CS1      | 0   | Chip select output to IC508 | 134     | E-VDD     | -   | Power supply                |
| 89      | E-VSS       | -   | Connect to GND              | 135     | OSD-DATA2 | -   | Connect to TP528            |
| 90      | SD-CSO      | 0   | Chip select output to IC504 | 136     | E-VSS     | -   | Connect to GND              |
| 91      | I-VDD       | -   | Power supply                | 137     | OSD-DATA3 | -   | Connect to TP529            |
| 92      | EDO-CAS     | -   | Connect to TP511            | 138     | TEST-PIN4 | -   | Test pin                    |
| 93      | I-VSS       | -   | Connect to GND              | 139     | OSD-BLK1  | -   | Connect to TP531            |
| 94      | EDO-RAS     |     | Connect to TP512            | 140     | OSDVC1    | -   | Connect to TP532            |
| 95      | E-VDD       | •   | Power supply                | 141     | TEST-PIN5 | -   | Test pin                    |
| 96      | M-ADDR9     | 0   | Address output to IC508,504 | 142     | VDATA0    | 0   | DVD image signal output     |

### Pin Function (3/3)

| Pin No. | Symbol    | I/O | Function                             | Pin No. | Symbol     | I/O | Function                          |
|---------|-----------|-----|--------------------------------------|---------|------------|-----|-----------------------------------|
| 143     | VDATA1    | 0   | DVD image signal output              | 176     | A-VDD      | -   | Connect to TP507                  |
| 144     | I-VDD     | -   | Power supply                         | 177     | VCLK       | I/O | Dot clock signal output (27MHz)   |
| 145     | VDATA2    | 0   | DVD image signal output              | 178     | SYSCLK     | -   | Connect to TP505                  |
| 146     | I-VSS     | -   | Connect to GND                       | 179     | A-VSS      | -   | Connect to GND                    |
| 147     | TEST-PIN6 | -   | Test pin                             | 180     | DVD-DATA0  | I   | ATAPI data I/O to IC301           |
| 148     | VDATA3    | 0   | DVD image signal output              | 181     | E-VDD      | -   | Power supply                      |
| 149     | E-VDD     | -   | Power supply                         | 182     | DVD-DATA1  | ı   | ATAPI data I/O to IC301           |
| 150     | VDATA4    | 0   | DVD image signal output              | 183     | E-VSS      | -   | Connect to GND                    |
| 151     | E-VSS     | -   | Connect to GND                       | 184     | DVD-DATA2  | I   | ATAPI data I/O to IC301           |
| 152     | VDATA5    | 0   | DVD image signal output              | 185     | DVD-DATA3  | I   | ATAPI data I/O to IC301           |
| 153     | TEST-PIN7 | -   | Test pin                             | 186     | DVD-DATA4  | I   | ATAPI data I/O to IC301           |
| 154     | VDATA6    | 0   | DVD image signal output              | 187     | DVD-DATA5  | I   | ATAPI data I/O to IC301           |
| 155     | VDATA7    | 0   | DVD image signal output              | 188     | DVD-DATA6  | I   | ATAPI data I/O to IC301           |
| 156     | TEST-PIN8 | -   | Test pin                             | 189     | DVD-DATA7  | I/O | ATAPI data I/O to IC301           |
| 157     | HSYNC     | I/O | Horizontal synchronous signal output | 190     | TEST-PIN10 | -   | Test pin                          |
| 158     | VSYNC     | I/O | Vertical synchronous signal output   | 191     | V-REQUEST  | 0   | Master/Sleave Selection for ATAPI |
| 159     | IEC-958   | 0   | Digital audio data output            | 192     | V-STROBE   | I   | Host address for ATAPI            |
| 160     | E-VDD     | -   | Power supply                         | 193     | I-VDD      | 1   | Power supply                      |
| 161     | DA-DATA0  | 0   | Data output to IC702                 | 194     | A-REQUEST  | ı   | Connect to TP539                  |
| 162     | E-VSS     | -   | Connect to GND                       | 195     | I-VSS      | ı   | Connect to GND                    |
| 163     | DA-DATA1  | 0   | Data output to IC702                 | 196     | V-DACK     | I   | Host interrupt input for ATAPI    |
| 164     | DA-DATA2  | 0   | Data output to IC702                 | 197     | E-VDD      | ı   | Power supply                      |
| 165     | DA-DATA3  | 0   | Data output to IC702                 | 198     | SECT-SYNC  |     | Host write for ATAPI              |
| 166     | DA-LRCK   | 0   | L/R clock output to IC702            | 199     | E-VSS      | -   | Connect to GND                    |
| 167     | DA-BCK    | 0   | Bit clock output to IC702            | 200     | ERROR      | -   | Connect to GND                    |
| 168     | I-VDD     | -   | Power supply                         | 201     | HOST-SEL   | -   | Connect to GND                    |
| 169     | DA-XCK    | ı   | Non connect                          | 202     | HADDR0     |     | System control address input      |
| 170     | I-VSS     | •   | Connect to GND                       | 203     | HADDR1     | _   | System control address input      |
| 171     | DAI-DATA  | •   | Connect to TP501                     | 204     | HADDR2     |     | System control address input      |
| 172     | DAI-LRCK  | I   | L/R clock input from IC702           | 205     | DTACK-SEL  | -   | Connect to GND                    |
| 173     | DAI-BCK   | I   | Bit clock input from IC702           | 206     | CS         | Ī   | Chip select for ZIVA              |
| 174     | TEST-PIN9 | -   | Test pin                             | 207     | R/W        | Ī   | Write enable                      |
| 175     | CLK-SEL   | -   | Connect to GND                       | 208     | RD         | I   | Read enable                       |
|         |           |     |                                      |         |            |     |                                   |

# ■ NJM2903 (RIC3, SIC8) : Signal -supply dual comparator

#### 1.Pin layout




Pin function

- 1. A OUTPUT
  2. A-INPUT
  3. A+INPUT
  4. GND
  5. B+INPUT
  6. B-INPUT
  7. B OUTPUT
  8. V+

- 8. V+

# 2. Block diagram





AUDIO & COMMUNICATION BUSINESS DIVISION

PERSONAL~&~MOBILE~NETWORK~BUSINESS~UNIT.~10-1,1 chome, Ohwatari-machi, Maebashi-city, 371-8543, Japan~Alliness~UNIT.~10-1,1 chome, Ohwatari-machi, Maebashi-city, 371-8543, Ohwatari-machi, 371-8543, Ohwatari-

(No.20966) 200106(V)